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Abstract 

A family of superintegrable real Hamiltonian systems exhibiting S O (p, q) symmetry is obtained 
by symmetry reduction from free SU(p ,  q) integrable Hamiltonian systems. Among them we find 
P6schl-Teller potentials. The Hamilton-Jacobi equation is solved in a separable coordinate system 
in a generic way for the whole family. We also study the projection of the geodesic flow from the 
complex to the real systems. 
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1. Introduct ion 

Completely integrable Hamiltonian systems play a distinguished role among the Hamil-  

tonian dynamical  systems. A Hamiltonian system is said to be completely integrable if 

it has N - 1 integrals of  motion Q j ( s ,  p) ,  j = 1 . . . . .  N - 1, and the set {H, Q j ,  j = 

1 . . . . .  N - 1 } is functionally independent, well defined in phase space and in involution. 

When there are more than N - 1 integrals of  motion (not all of  them in involution) the 

system is called superintegrable. It is maximal superintegrable if  this number is equal to 

2N - 1. Superintegrability is also closely related to the fact that the Hamil ton-Jacobi  (H J) 

equation is separable in more than one coordinate system. 
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There are not so many examples of superintegrable systems [ 1 ], for example, the har- 

monic oscillator, the Kepler problem, the Calogero-Moser [2,3] and the Smorodinsky- 

Winternitz [4] systems. They share outstanding properties: at the classical level all the 
bounded trajectories are closed (periodic) and at the quantum level the energy spectrum is 

degenerated. Then, it looks very interesting to construct new superintegrable Hamiltonian 
systems and study their properties. Recently, new systems of this kind have been introduced 
in [5,6] whose integrals of motion are quadratic functions of the momenta and rational func- 

tions of the coordinates. The aim of this paper is to study in a unified way some of these 
superintegrable systems. 

These systems were obtained as follows. We consider a free Hamiltonian system with 
configuration space the homogeneous space ~ N = {y ~ C N+l Igu~yU~ ~ = 1} o fSU(p ,  q), 

p ÷ q = N + 1, and Hamiltonian 

1 / z v -  H :  ~cg PuPv, ( l . I )  

where g is a Hermitian metric of signature (p, q), c is a positive real constant and the bar 
stands for complex conjugation. 

By means of the Marsden-Weinstein symmetry reduction [7] we obtain a system which 
is not free, living on areal SO(p ,  q) homogeneous space S N = { s c ~ U + l [ g u~s U s ~ = 1}. 

A potential V(s) appears in the reduced Hamiltonian given by 

H r 1 #v = ~cg psuPs~ + V(s). (1.2) 

The potential V (s) is a consequence of the reduction procedure as it will be explained later. 
Note that the Hamiltonian (1.1) has S U (p, q) symmetry while the reduced one (1.2) has 

SO(p ,  q) symmetry. 
The paper is organized as follows. Section 2 is devoted to describe the geometric structure 

of the configuration and phase spaces of these systems. The Marsden-Weinstein reduction 
is carried out in Section 3 for the free SU(p,  q) Hamiltonian. In Section 4, the Hamilton- 
Jacobi equation for the reduced system is solved in a pseudo-spherical coordinate system. 

Section 5 presents an example in order to enlighten the results of Section 4. Some results 

about geodesic flows and their projections are presented in Section 6. In Section 7, we state 

the conclusions and further outlook of this work. 

2. Hermitian hyperbolic spaces 

The family of Hamiltonian systems which we will study in the sequel is defined in homo- 

geneous spaces of SU(p,  q) and SO(p ,  q). We will describe in this section the geometry 
of these spaces. 

2.1. Homogeneous spaces of  SU(p,  q) and SO(p ,  q) 

In order to present these results in a unified way, we will use the formalism of the or- 
thogonal Cayley-Klein (CK) groups (denoted by SO~(N + 1), ~ = (xl . . . . .  XN) ~ ~N), 
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which are the motion groups of  the 3 u (N-dimensional) CK geometries [8-10]. 

Let {Jab; a < b ; a , b  = 0,1 . . . . .  N} b e a b a s i s o f s o ~ ( N +  1), the Lie algebra of 

SO~ (N + 1). The commutation relations characterizing these algebras are 

[Jab, Jac] = tCabJbc, [Jac, Jbc] = tCbcJab, [Jab, Jbc] = - J a c ,  (2.1) 

where a < b < c and gab = l-Ib--a+l gi- 

The real parameters xi can be rescaled to + 1 or - 1 if they are nonzero. We recover the 

pseudo-orthogonal groups S O ( p ,  q), p + q = N + 1, when all the g'i are nonzero. We 

will only consider this case in the following. 
These groups act linearly on ~U+l by matrix multiplication but the action is not transitive. 

The pseudo-sphere 

, ~ N ~ ( x O ) 2 + t ¢ O I ( X I ) 2 + . . . + K O N ( x N ) 2 = I ,  x # E R ,  # = 0 , 1  . . . . .  N, 

(2.2) 

is the orbit through the point (1, 0 . . . . .  0) and can be considered as the homogeneous space 

S O ~ ( N  + 1 ) / S O ~ , ( N ) ,  with tU = (x2, x3 . . . . .  xu).  In other words, these groups keep 

invariant the bilinear form defined by 

g~ = diag(1, x01, x02 . . . . .  KON). (2.3) 

We will omit the subscript ~ in the metric in the following. 

The (N + 1)-dimensional matrix realization of  the generators Jab is 

Jab = --tCabEab + Eba, a < b, a, b = O, 1 . . . .  N ,  

where Eab is the (N + 1) × (N + 1) real matrix defined by (Eab)i j = •ai6bj. A realization 
in terms of  vector fields, associated to the action over ~N+I,  is 

Jab = tCabXbOa -- XaOb. 

For the pseudo-unitary groups, we can consider in a similar way the family of unitary 

Cayley-Klein groups, S U ~ ( N  + 1), ~ = (K1 . . . . .  KN) with xi C R* in our case. These 

groups act on the complex manifold C u+l  by matrix multiplication keeping invariant the 

Hermitian form 

(x, y) = gu~xU~ v, x ,  y E C N+I. (2.4) 

In this case a (N + 1)-dimensional matrix realization of  a basis of  s u ~ ( N  + 1) is the 

following: 

Jab = --KabEab -- Eba, Kab = i(tCabEab + El,a), a < b, a, b = O, 1 . . . .  N - 1, 

Ha = i(Eaa - Ea+l.a+l) ,  a = O, 1 . . . .  N - 1 .  

A realization in terms of  vector fields is now 

Jab = XabYbOa -- YaOb, Kab = --i(XabYbOa + ya06), Ha = i(--YaOa + Ya+lOa+l). 
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Let us denote by C N+l the complex manifold C N+l endowed with the Hermitian form g 

defined by the metric g (2.3). The orbit through the point (1, 0 . . . . .  0) 6 C N+I is the real 
K 

submanifold 

"H u -= [y°l 2 + xollyl[ 2 + . . -  +KONIyNI 2 = 1, (2.5) 

which is the homogeneous space SU~(N  + 1)/SU;r,(N),  U = (x2 . . . . .  xU). If we take 

into account the action of  U (1) on "H N, i.e., y ~ e i~ y, we obtain the Hermitian symmetric 

spaces 

SU~(N  + 1) 
cN ----- U (D x S ~ , ( - N )  ' 

which are noncompact spaces, except when xi = 1, i = 1 . . . . .  N,  this case corresponding 

to the complex projective space C P  N =-- S U ( N  ÷ 1 ) / U ( N ) .  We have a principal fiber 

bundle with structure group U ( 1): 

V(l)--, - - ,  

The complex pseudo-spheres C N are the configuration spaces of  the Hamiltonians under 
K 

study. 

2.2. Vector fields on 7-( N and C N 

In the complex manifold C N+l we consider real vector fields 

_-- ~U(y, y)ayU + gU(y, y)ay, .  (2.6) 

The condition for a vector field on C u+l  to be a vector field on 7-/u can be easily expressed 

through 

~u~u + ~Zy u ---- 0. (2.7) 

Owing to the invariance of  7-/u under the action of  the group S U,~ (N + 1 ), the fundamental 

vector fields of  this action are tangent to the hyperboloid. In fact, considering the natural 

(N + 1 ) x (N + 1) representation of  SU;~ (N  + 1), the fundamental vector fields are 

~Xj = - ( X j ) ~ v  YVay ;a -- (Xj)~v YVay #, ( 2 . 8 )  

where Xj  are the matrices in the corresponding (N + 1) x (N + 1) representation of  

s u i ( N  + 1), and the vector fields sexj, j = 1 . . . . .  N ( N  + 2), are real vector fields in 

T'H ft. Relation (2.7) is equivalent to the condition over the matrices Xj  

X j K  + K X )  = 0, (2.9) 

where K is the diagonal matrix corresponding to the Hermitian form g. This relation is the 

condition for the matrices Xj  to be in the Lie algebra s u ~ ( N  + l). The vector field 

~0 = --YlZOy u -- y#O~. (2.10) 
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corresponding to the diagonal matrix, which is in u~(N + 1), is clearly a tangent vector 

field. 
The real vector field on ~ f f  

~F : iyUOyU -- iYU8~, (2.1 1) 

is tangent to the fibers of  7-/u (it is the fundamental vector field associated to the action 
of U(1) on 7-/~v). According to it, the tangent space to the base manifold C~ u (to the orbit 

space) in each point [y] is isomorphic to a subspace Wy of the vector space tangent to the 
hyperboloid. This subspace Wy is orthogonal to the fibers in a point of  the hyperboloid 

projecting on [y]: Jr(y) = [y], where Jr is the natural projection 

Jr .)_/N ~ cN. (2.12) 

Hence, we can write the subspace Wy in terms of the tangent vectors to 7-/~ 
K 

Wy = {~ • TyT-t~:~"~u-  ~tZy. = 0} 

or in terms of the tangent vectors to C ff 

Wy = {~ ~ r~yjC~:¢"~. = 01. 

The tangent application Jr, is an isomorphism when we restrict to the subspace Wy 

71 u Jr, : Wy ~ [y]C£ . (2.13) 

We can define an almost complex structure in C~ v, J '  satisfying 

7r, J = JrTr,, 

where J is the complex structure in Wy (J(y) = iy). It can be shown [11] that J '  is in fact 
a complex structure and C~ s a complex manifold. 

In each tangent space to C~ v we can define a Hermitian metric with respect to the complex 
structure J '  given by 

2 
h(jr , (~) ,  Jr,(r/)) = - - ( g ( ~ ,  r/) + g(q, ~)), (2.14) 

c 

where c is a positive constant related to the holomorphic curvature and ~, 1/are vectors on 
Wy. 

The action of U~ (N + 1) is transitive on 7-t~ and C-/v. However, it is not effective, and 
K K 

we will use SU~(N + 1) which has an almost effective action on C u.  
K 

2.3. Affine coordinates 

In a domain of the hyperboloid 7-(~ v where y0 7~ 0, we can define affine coordinates 

yJ 
zJ = f-6' j = 1 . . . . .  N. (2.15) 
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If  we consider the orbits on 7-/u under the action of the group U (1), we can take a section 
K 

with the condition y0 6 ~+.  Hence, we can invert Eq. (2.15) and define the homogeneous 
coordinates yU in terms of the affine ones 

gu~yUy v = ly°l 2 + k i j y i y  j = (y°)2(1 + Izl 2) = 1, (2.16) 

where kij = gij, i, j = 1, 2, N and Izl 2 = ki 'z iz  j 
' '  " 7  J • 

Eq. (2.15) implies, due to the choice of  the section, that 

yO 1 y j  Z j 
- -  - -  j = 1 . . . . .  N .  ( 2 . 1 7 )  

We want to compute the Hermitian metric h in the affine coordinates z. To do that we 

need the expression of the tangent map rr,. Let ~ be a vector field on the subspace Wv of 

= ~UOy, +~uO~u, g u ~ u ~  v = 0. (2.18) 

Applying zr, 

7r,(~) = ~UOy, (zJ)Oz j + ~uOy~, (~J)o~j. (2.19) 

and using 

OyOZ j = - ( 1  + Izl2)l/Rz j ,  O/z j = (1 -F Izl2)'/2~/. 

we get the image under rr, 

~' = 7r.(~) ---- (1 -t- Izl2)l/2(~ j + krsZJSS)~rOzj -I- c.c., (2.20) 

where c.c. means complex conjugate. Hence 

~'J = (1 + Izl2)1/2(~ j + krszJzS)~ r. (2.21) 

The inverse transformation can be easily computed (remember that Jr. is an isomorphism 

(2.13)) 

~J = (1 + 1z12)-3/2[(1 + Iz12)6/ - klmzJzm]~ 'l, (2.22) 

and the first component ~0 is given by 

t 0 =- - ( 1  -t-Izl2)-3/2kjlzl~ 'j. (2.23) 

With these expressions we can write explicitly the Hermitian form defined on the tangent 
space of C ff 

gu~seuO v = (1 + Izl2)-2[(1 + Izl2)kjl - kmlk j i zmzi]~ 'J~  'l. (2.24) 

which is a generalization of the Fubini-Study metric in a generic noncompact case. Thus, 
the covariant components of  the tensor h are 

hjl (1 + Izl2)-2[(1 + Izl2)kjt m=~i = - k,nlkjiz ~ ]. (2.25) 
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The contravariant ones are easily obtained. Assuming that 

h jl = A(k  j l  + BzJz l ) ,  

and imposing the condition h i J h j l  : 8~ we obtain 

h j l  ~- (1 + Izl2)(k fl  + zJzl). (2.26) 

2.4. Free Hamiltonians in C N+l and C N K K 

Let us now consider the free Hamiltonian in C~ +l . In the cotangent bundle TC N+i let 
K K 

us choose the Liouville 1-form 

0 = Ptz dY u + ritz d~9 u (2.27) 

in coordinates (yU, Pu)" The closed 2-form oJ = - dO is given by 

09 = dy u A dpu + d~ u A d/Stz. (2.28) 

The free Hamiltonian in this space is 

1 /2v- H = ~cg PuPv,  (2.29) 

where c is a positive real constant. 

The extended action of  the group SU~ (N + 1) leaves this Hamiltonian invariant. If  we 

use homogeneous coordinates in 7-/~ v we have to consider the constraint g~z~Uy v = 1. 

Using affine coordinates in C~ N the Hamiltonian can be written as 

H = h ij pz  i PzJ : (1 + k in  Z 1 ~m) (kiJ ~z  i PzJ "~- (zi  Pz i ) (zJ PzJ ) ) ,  (2.30) 

where pz i is the momentum conjugate to the coordinate z i. 

3. Symmetry  reduction 

The use of  the Marsden-Weinstein reduction [7] will allow us to construct integrable 
systems in the manifolds that we have considered above. We will be mainly concerned with 

the compact Cartan subalgebra of  su~, ( N  + 1), which has dimension N. This procedure is 
also valid for any maximal abelian subalgebra of  dimension N of  su~ (N + 1), having a 

basis formed by purely imaginary matrices [5]. We will use in the sequel a maximal abelian 

subalgebra, G, of  u~? (N + 1) in order to simplify the computations. After reduction we can 
impose the appropriate conditions to restrict the problem to the real pseudo-sphere. The 

approach will be made using homogeneous coordinates. 
Let G* be the dual space of  the Lie algebra G. We define the momentum map 

J " T*C N+l > G* 
K 
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by 

( J ( y , p ) , X ) = F 2 L ( y , p ) ,  X e G ,  (3.1) 

where ))L is the fundamental vector field on T*C~ N+j associated to X. We will consider 
K 

c N + I  real vector fields on i , ~ = ~UOy, + guO2,, their lifted vector fields on T*C N+j are 

given by 

~L(y, p) --_ ~lZOy u _ pV~y~Opu q-C.C. (3.2) 

Hence, the fundamental vector fields associated to X ~ su~ (N + 1) on C N+I and T*C N+l 
/( K 

are, respectively, 

~( = -(X)~v yVOyU + c.c., (3.3) 

2 L ~- - (X )~yVOy ,  + ptz(X)~Op~' + c.c. (3.4) 

On the other hand, the function F2L is defined by the relation i(J(L)co = dF2c,  with co = 

dy u A dpu + d~ u A dfiu the symplectic 2-form on T*C~ +1 . Considering an appropriate K 

basis, {Xil (Xi)~v = - ( X i ) ~ ;  i = 1 . . . . .  d im~} ,  of  G we obtain 

F2p (y, p) = Fi(y,  p) = -(Xi)~v (Y~Pu - Yvfiu)" (3.5) 

Let (r i )  E ~* be a regular point of  the image of  the momentum map (3.1). The reduced 

space is J - l ( r ) / ~  and can be obtained as follows. Let (s, p)  6 T*C~ +l be a point of  K 

J l ( r ) , w h e r e y  = s 6 N N+1 C C~ +j .  Under the action o f G ,  t h e L i e  subgroup of  
K 

U~(N + 1) = SU~(N + 1) ® U(1) associated to the Lie algebra ~, this point (s, p)  is 

transformed in the following way: 

V 'u -- s 'u = A(x)~vs v, p' ---- A-l(x)V~pv, (3.6) 
- 

with A(x )  = exp(x iXi )  c G, Xi E ~ and x i E ~. Imposing that (s, p)  belongs to j - I  (r), 

i.e., Fi (s, p) = ri ,  

-(Xi)gv Sv (Pu -- Pu) = ri, 

we get a condition over the imaginary part of  the momentum p 

i(Im p)T  X i s  =-- - - l  ri.  (3.7) 

Finally, the reduced Hamiltonian is 

_/xr 1 fi.v - - - = ~cg P u P v = I c ( g  u v R e p u R e p ~ + g u v I m p u I m p ~ ) "  (3.8) 

It is easy to check the SO~ (N + 1) symmetry of  the reduced Hamiltonian. If we consider 

Pu = Psu + i f~  (s)r~, where psu is the momentum conjugate to the real coordinate s u, the 

Hamiltonian (3.8) is rewritten as 

r 1 ILv H~e = ~c(g psuPs~ + V(s,  r)), (3.9) 
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with V(s, r) = gUVf(s)~f(s)rvrprr.  Note that the group parameters (x i) are ignorable 

variables, i.e., they do not appear in the Hamiltonian. 

In the case of  the compact  Cartan subalgebra of  u? (N ÷ 1) we have the basis 

Xj = i ( E j - l , j - i  - Ej j) ,  j = 1 . . . . .  N,  Xo = diag(1 . . . . .  1). 

After  reduction by this subalgebra we obtain the potential 

m2 m2 m 2  (3.10) 
V---- (s0) 20 ÷K01 ( s ~ )  2 ÷ . . . a t  _K0 N (sN) 2' 

where mi are some real constants related to ri. If  we are using a subalgebra of sun (N + 1) 
instead of  u~(N + 1) we have to impose that ~ m i  : 0 and tr(xiXi)  : 0. On the other 

hand, if  we are in 7-/N, the point y = s verifies guvsUs v = 1 and sapsu = 0. Obviously, in 

this case, the reduced Hamiltonian system is in the real pseudo-sphere ,S~ u.  

4. The Hamilton-Jacobi equation 

In this section we will solve the Hamil ton-Jacobi  equation for the Hamiltonian 

H r = m2 m 2 m 2 c N 
~(gUVpsuPs~ ÷ ( ~  ÷ K01 (S-- ~ ÷ ' ' '  ÷ K O N ( - - ~ ) .  (4.1) 

Let us consider the following system of"pseudo-spher ica l"  coordinates [ 1 0] which allow 

us to parametrize the pseudo-sphere s~N: 

sO = CXON (di)N )Cro, N_l (di)U-1) - " Cxol (¢~1), 

S l = CXON (~N)CIco,N_ I (~U-l)---  Sxol (~bl), 

$2 : CXON (d/)N )Cxo, N I (di)N-1) . . . Sxo2 (~b2), 

s3 = CKou (~bu)Cxo.N_ t (¢PN-1) . . . &,03 (~P3), (4.2) 

sN--1 = Croon (~N)SKo, N_I (¢~N-1), 

S U : SXON (~U)" 

The symbols Cx (x) and Sx (x) stand for a generalized version of  the trigonometric functions 

cos x and sin x, respectively. They are defined in the following way [8]: /cos   
C~(x) = 1, t,: = 0, Sx(x) = x, x = 0, 

cosh 4"-Z-xx, x < 0, s inh(~/-L-xx)/vrLx -, x < 0. 

When tc = 1 we recover the usual trigonometric functions, when x = - 1  we find the 

hyperbolic functions and when x = 0 the parabolic or galilean functions, Co(x) = 1 and 

So (x) = x. These generalized functions verify, for instance, the following properties: 

C2(x) + xS~(x) = l, C~(x) = - K & ( x ) ,  T x & ( X )  = C~(x). 
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In such coordinates (4.2) the Hamiltonian (4.1) is rewritten as 

Hx r = XON P~u + , [ 
C20N(C~N ) KO'N-I ON-I -[- 

x . . .  a:Olp~ + - - T - - ~ + - -  
I CKOl (~i)|) SK2Ol ((J)]) 

KO'N--lm2--1 ] KONm2 

+ s2,,~ ,(4,u-~)J + • _ SX20N ( ~ N )  

CK2), N 1 (~bN-  l ) 

]...] 
(4 .3)  

The HJ equation associated to this Hamiltonian (4.3) is obtained after the substitution 
POi ~ OS/30i  in H r. So, we get H r (OS/OOi, Oi) = E. This equation is completely 

K K 
separable, and has a solution of  the form 

N 

S (q~l . . . . .  (gN) -~ Z Si(dl)i) -- Et. 
i=1 

(4.4) 

We can separate this equation in the set of equations 

( OSN ~2 aN- I  KON m 2  
KON ~O~)N/] -1- C20N(dgN ) + S20N(dgN~ ) 

( O S N - , ~  2 aN-2  K 0 , N - I m 2 _ I  

XON-I \3dpN- lJ  + C2ou t ( ¢ N - l )  + 2 ( ¢ U - 1 )  , SKo, N I 

- - a N ,  

= a N - I ,  (4 .5 )  

xo~ \ a ¢ 1 ]  + c2o,(¢~) + s2,,,(¢~------~) - a l ,  

with aN = E and a0 = m~. Hence, the general solution of  (4.5) is 

Si -~ q- KOi a i C2oi(dPi ) SK2i(~i) d ¢ i ,  i = 1 , 2  . . . . .  N .  (4 .6 )  

If we consider the separation constants as the new momenta, the conjugate coordinates will 
now be 

OS OS i OSi+l 
f i  - - -  - -~- - - ,  i = l . . . . .  N --  1, (4 .7 )  

Oa i Ool i Oa i 
3S OSu 

f lU . . . .  t ,  ( 4 . 8 )  
OaN OOl N 

which can be solved by an iterative procedure as follows. 
From (4.6), for i = N,  we get 

KON O1N ~---~-'-, ) _  d~N. (4 .9 )  
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Using the change of variable uu  2 = CKO N (qbN), (4.9) can be written as 

OSN 1 f ~aU -- q:4 [--OtNU2 + bNUN -- OtN-I 1-1/2 dUN, (4.10) 

where b u  ~- otu + OtN-1 -- m 2 .  The integral (4.10) depends on the sign of  0tN, that is, the 

sign of the energy. We can distinguish the following cases: 
(1) O/u > 0 

OSN = + l ~ s i n - '  ( --2-----aUUN +---bu ) (4.11) 
3 0t N 4 Vrff-ff \ ~ b 2 

(2) 0t N < 0 

(a) b 2 --40tNaN-I < 0 

OS N 1 ( --20t_____UUU +__bu ) . 
-- q: 4- ~/'~'d-U sinh-1 \ V /  b 2 + 4 a N a N - I  

(b) b2u-  40tNOIN--I > 0 

(4.12) 

OSN 1 
Oet N 

x Iog(--2~/--OtN(--CtNU2N + bNUN -- 0tN-l) -- 2aNUN + bN). 

(4.13) 

(3) CtN = 0 

OSN __T~/(OtN-1 -m2)uN-OtN-I 
OOIN OlN- I - m 2 

From (4.4) and (4.8) we obtain 

OSN 
t - t o  - -  OOIN ' 

where to = - - f i N ,  and the solutions for the UN variable are 

(4.14) 

(4.15) 

(1) UN = 

(2)(a) UN = 

(b) 

bN ~ ~/b 2 - 4OtNCtN-i sin(4x/ff-ff(t -- to)) 

20iN 

bN ~z v / - b 2  + 40tNOtN-1 sinh(4~/-Zd~(t -- to)) 

20tN 
1 

U N = 7 ~ ( 2 b N  + (40tNCtN-I - -b  2) exp (~4~-L- -~ ( t  - - to))  
,¢ct N 

(4.16) 

(4.17) 

- e x p ( + 4 V ' - Z ~ ( t  - to))). (4.18) 
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(3) UN = 4(fiN-1 - -  m2)(t - / 0 )  2 n t- OtN--I ( 4 . 1 9 )  

O/N_ 1 -- m 2 • 

The remaining coordinates fli, i = 1 . . . . .  N - 1, can be computed in a similar way, 
taking into account (4.7). The first term in the RHS of this expression is obtained as in the 

c a s e  OSN/OOl u. It is enough to change the index N by i in expressions (4.9)-(4.19). The 
computation of the second term is as follows. From (4.6) we get 

aSi+l _Ko,i+I [ C _  2 
~ /  - -  4- T J x0.i+l (~bi+l)  

× K0,i+I ffi+l 2 
C~o,~+ , (~i+1) 

K0i+m  )] j2 
$2o,i+ I (~i+1) 

dobi+ 1, 

(4.20) 

2 Using again the change of variable Ui+ 1 ---- Cxo,i+l (q} i+ l ) ,  (4.20) is written as 

0s,+, _ f ,  2 OOt i 4 Ui+l[--Oti+lUi+l -}-bi+lUi+ I --Oti] l /2dui+l ,  (4.21) 

where bi+l  = o~i+1 --[- oti - m 2 + l  • 

The integrals (4.21) also depend on the sign of  oti. The results can be listed as follows: 

(l)  tY i > 0 

(2) 

OSi+l 1 ( b l ~ F l U i + _ l - - 2 o t i l  

Ooei - -4-~---~ s i n - '  ~k/'/i+lV/b2+l -4eei+lai J" 

O/i < 0  
(a) b /2+l -  4ff i+ lCt  i < 0 

0Si+I 1 ( bi+lUi+, - 2oli ) ~ /  -- 4 - ~  sinh -1 - - -  . 

ui+l /-b +l + 4o, i+l i 

(b) b2+l - 4oti+lOt i > 0 

(4.22) 

(4.23) 

aSi+l 1 

[ 2W/-~i(--~i+lU~+ 1 -~-bi+lUi+l - ~ i )  
x log 

Ui+l bti+l 

2oi ] 
+ bi+l 

(4.24) 

(3) ~i = 0  

OSi+ 1 V/-Oti+lU2+l --I-(0/i+1 - m/2+1)/4i+1 
- ZF- -  (4.25) 

O~i 2Ui+l(~i+l --m~+ 1) 



26 J.A. Calzada et al./Journal of Geometry and Physics 23 (1997) 14-30 

Expressions (4.22)-(4.25) added to expressions (4.11)-(4.14) (substituting the index N 

by i) give the complete solution off l i ,  i = 1 . . . . .  N - 1 (according to the sign of oti). 
As an example, let us consider the case l¢ i = 1,  i = 1 . . . . .  N .  The manifold is now the 

real sphere S N and the angles ~ i  in (2.8) take the values 0 < qh < 27r and -½r r  < 4)j < 

½~r, j ~ 1. From (2.9), all the constants 0t i are positive. Hence, the solutions are 

bN qz CbLN -- 40INOIN_ 1 sin(4v,~--ff(t - to)) 
cos2 (q~N) ---- , (4.26) 

2~N 

cosZ(4)j)= ~ bj cosZ(q~j+,) mb~Zi ~4otj+l-------~j 

x [2~-d)-[(bj+l - ~j+l cos2 (4)j+l)) cosZ(4>j+l )]1/2 sin(+4flj  ~/-~) 

"1 

(bj+! cosZ(q~j+l) - 2 ~ j ) c o s ( 4 f l j ~ ) ]  / , i = 1 . . . . .  4- N 1. 

...1 

(4.27) 

5. Example 

As an application of  the theory developed in Section 4, we will study here a particular 

case. 
Let us consider a system associated to S U ( 2 ,  1). This group belongs to the CK family 

and appears, for instance, when N = 2 and ~ ---- (xl = 1, x2 ---- - 1 ) .  Note that from a 
geometric point of  view, the (reduced) real hyperboloid is endowed with a co-hyperbolic 

geometry [8]. According to expression (4.3) we can write the Hamiltonian of our system 

a s  

1 [ m 2 m 2 ] m 2 
Hr  = - P ~ 2  + - P~, + + (5.1) 

C OSh2 q~2 CO~-~bl si n2 q~l .] sinh 2 q~2" 

Taking the values m0 = 1, ml = - 0 . 5 ,  m2 ---- - 0 . 5  we obtain the numerical values of  

the constants 

oq = 3.4841, t~ 2 = E = -0 .3281 .  

We choose as initial conditions for our physical system the following ones: 

~b 1 (0) = 0.78, ~b 2(0) = 3, POI (0) = 1, p ~  (0) = -0 .6 .  

Using the property of  separability of  the system we obtain (4.6) 

l / i (  ., T~2 - q: 2 -or2 + c°sh 2 q~ sinh 2 4)2 ,/_] d~b2. 

(5.2) 

(5.3) 

( 5 . 4 )  
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1 

O. 

-3 -2 -I 
t 

1 

6 

5 ;/ 

-4 -3 -2 -I 1 2 3 

Fig. 1. Time evolution of 4h and q~2. 

Making the change of  variable u2 = c o s h  2 q~2, we finally arrive at 

1 
u2 = ~--~ (2b2 + (4a2o0 - b 2) exp(4~/-L--~(t - to)) - exp(-4~-L--~( t  - to))). 

(5.5) 

Since OS/Ootl = OS2 /Oo t  1 -t- aS1 /OOl l  we must evaluate both terms, i.e., 

i [( -, -, 0S2 _ + 1  cosh_2(q$2) -or2 + - -  d462, (5.6) 
0Oil 2 cosh 2 462 sinh 2 4)2 J .] 

and 

. ,  .0 m,.)] J '  
-- dq$1. (5.7) 

0Otl 2 Oil cos 2 4hi sin 2 q$1 

Taking into account the changes of  variable ul = cos 2 4~1, u2 = cosh 2 q$2, and performing 

the integration (note that in this case oo > 0) we get 

bl zp v/b 2 - 4OtlC~0 s i n ( 4 ~ ( f l l  - OS2/Ootl )) 
ul = (5.8) 

2otj 

The time evolution of the variables q$I = cos - I  ( v / ~  -) and 462 = cosh-~ ( x / ~ )  is given 
in the graphics (Fig. 1). 

6. Projec t ion  o f  geodes ic  f lows 

The geodesic flow in C u is easily obtained from the Hamilton equations and the flow 
in the real pseudo-sphere S~ u is achieved from the first one by projection. 

The equations of  motion in H u can be computed using the method of Lagrange multi- 
pliers. The new Hamiltonian H;c takes into account the condition guoyU~ v = 1, i.e., the 
Hamiltonian system is in C N, so 

1 , u u -  Hx = ~cg PuP~ + )~(grtPY#zY ~ - 1), 
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where X c R is the Lagrange multiplier to be determined. The Hamilton equations give rise 

to the equation 

~:u + ¼~.cyU = 0. (6.1) 

There are three cases, according to the values of  k: positive, negative or zero. However, we 

shall jointly handle all of  them. The solution of (6.1) is 

yU(t) = AUC~o(t) + BUSo~(t), (6.2) 

pu(t )  = -wAuSo j ( t  ) + BuC~o(t), (6.3) 

where w = ¼Xc, and A u, B u are integration constants satisfying gu~Au ft v = 1, 
guvBU[7 v = w, and gu~(AU[7 ~ + AUBV) = 0. The geodesic flow on ~ U  is given by 

(6.2). Considering affine coordinates it is easy to obtain the flow on C u .  

The Lagrange parameter ~. is, as usual, the energy of the system E = ¼cgDV~upv = )~. 
Note that when E > 0 the motion is bounded and when E < 0 the motion is unbounded. 

Taking into account that we have made the symmetry reduction using the compact Cartan 

subalgebra of  su~ (N + 1) one easily gets the projected flow on S~ u. So, a generic element of  

the Lie group associated to this subalgebra is given by A (x) = diag(e ix°, e ix1 . . . . .  eixU), 

with Y~U_ 0 X i = O. Hence, yU = A(x)~Ls ~ = eixUsu (no sum in the index/~). The flow can 

be projected in the following way: 

(S/Z) 2 = lYr~l 2 = IA~I2C2(t) + IBUl2S2(t) + 2 Re (AU[Tu)Cx(t)Sz(t),  

with the conditions gu~AU A v = 1, gu~BU B v = X and Re (gu~AU B v) = O. 

This solution was obtained in Section 4 using pseudo-spherical coordinates. 

7. Concluding remarks 

This paper presents a realization of the conjecture given in [12] in the sense that any 
completely integrable system "should arise as reduction of a simple one". In our case these 
simple systems are free systems, which are geodesic flows in a homogeneous space of a 

Lie group. 
We can consider another maximal abelian subalgebras (MASA) of s u (p,  q) [ 14] instead 

of the Cartan subalgebras. The method is similar and some results can be found in [5,6]. 
For low dimensions some of our potentials can be considered as generalizations of  the 
celebrated P6sch-Teller [ 13] and Morse (for nilpotent MASA) potentials [ 15] which have 
many applications in atomic physics. See also the work [16] for other S O ( p ,  q)-invariant 
integrable systems. 

A well-known Hamiltonian very closely related with our systems is the Rosochatius 
Hamiltonian 

N 1 " " + Z]  
H = 2 Z  2 Z]  

tt=O # = 0  /z=O 
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x~N X 2 1 and a u and b u are constants  [17-20].  If one does not  consider  the where z--,u=0 u = 

harmonic  terms of  this potential ,  we have the reduced Hami l ton ian  for C p N [21 ] to the real 

sphere S N. As we have seen, our  Hami l ton ians  are a general izat ion of  it. It is interest ing to 

note that this compact  case, i.e., when  xi = 1 for all i, has been studied by Gagnon  [22] 

and his results are in agreement  with ours (see also [21]). As it was remarked in [20], there 

is a deep connect ion  between the geometr ic  and algebraic structures of many  Hami l ton ian  

systems. 

It is worthy to note that our  method,  besides to handle in a unified way a big family of 

these systems (containing both compact  and noncompac t  cases), enl ightens the connect ion  

be tween both structures. 

Further  work on these systems, like reduct ion using another type of  abetian subalgebras 

and quantum versions is in progress. 
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